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Abstract

AN .
On completing the design of éhgltivariable feedback
system it is always desirable to be able to predict that under
certain changes the system will remain stable. In these notes
some methods are described for determining the robustness
properties of a multivariable feedback system under (!
‘(if simultaneous variation of sensor (or actuator) gains,

*(1i) simultaneous nonlinear perturbations of loop gains, and

. (1ii) plant parameter uncertainty.
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l. Introduction

In the inverse Nyquist array methodl for mﬁltivariable
feedback design, the designer,having made the inverse of the
open-loop system diagonally dominant,can by examination of the
open-loop inverse Nyquis£ array (with Gershgorin circles)
determine bounds on feedback gains for stability.The characteristic
locus design methodz, although a procedure which does not require
the constraint of diagonal dominance, only gives stability with
respect to a single gain common to all the loops. But, since
low interaction and accurate tracking are main objectives of
this procedure the closed-loop transfer function will almost
certainly be diagonally dominant,and in Section 2 it is shown
how by looking at appropriate closed-loop Nyquist arrays bounds
can be obtained on sensor or actuator changes for stability.

This is a technique developed and implemented on the Cambridge
multivariable design package by Dr. J.M. Edmunds?
In Section 3 the robustness of a multivariable

feedback system is considered under simultaneous nonlinear
perturbations of loop gains. A simple interpretation of work

by Mees and Rapp4 provides a bound on the nonlinear pertufbations
for stability in terms of principal gainss.

In Section 4 the problem of stability under plant
parameter uncertainty is discussed. In particular it is shown
how recent developments in the complex variable analysis of
multivariable feedback systems6 can be used to determine stability 3

with respect to any system parameter.




2. Closed-loop Nyquist arraxs3

I

]. .

[ The Nyquist array of a transfer function G(s) is formed
! by drawing the Nyquist diagrams of the individual elements of

|

G(s). If G(s) describes an open-loop system then the array is called

? - the open-loop Nyquist array; a similar diagram for G(s)_-l

is

called the inverse Nyquist array. If G(s) (G(s)-l) is diagonally

dominant then the diagonal elements of the Nyquist (inverse Nyquist)
| array, with superposed Gershgorin circlesl, give bounds on the
simultaneous variation of loop gains for stability. This is a
well known result due to Rosenbrock1 and is a hidily attractive
consequence of the inverse Nyquist array design method.

The characteristic locus design method is atechnique

which does not require the constraint of diagonal dominance
but as such only gives stability with respect to a sidgle
gain common to all the loops. However, the main objective of this
approach is to obtain a stable closed-loop system with low
interaction and accurate tracking, and so the closed-loop trénsfer 3
function R(s) will almost certainly be diagonally dominant. By
forming a Nyquist array for R(s), called the closed-~loop Nyquist
array, and drawing Gershgorin circles on the diagonal~element.
diagrams, bounds can be obtained on simultaneous variation of
sensor gains for stability. By looking at a similar closed-loop
transfer function bounds can be determined for actuator variations.

These methods are now described. .

2.1 Closed-loop configuration

We will consider the configuration shown in figurel below.
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The closed-loop transfer function R(s) is given by

R(s)=[1,+6, ()G, (s)G, (s)K(s)] T'6 (516 (s)G, (s)K(s)

and if K(s) has been designed succesfully then R(s) will be

diagonally dominant.

- 2.2 Stability under simultaneous changes in sensor or

controller gains

Consider a situation where feedback is applied around

the closed-loop system via a real diagonal operator F=diag{fi};

see figure 2. Then from the diagonal elements of the closed-loop

Nyqdist array the Gershgorin circles can be used to give bounds

on the fi for stabilityl.
+

N

R(s)

Figure 2

p .
i diag{ fi}k ' 1

But the configuration of figure 2 is equivalent to figures 3

and 4 :-

2 it
r K (s) )E;(s)f-—%{Gp(31 G ()

h

I +tdi ag{fs [E[—m+di agifg'ﬁ

; Figure 3

? *(s & dfif.+ I +ds éf% . ___;4_3——— ' ]

; -—L—.m+dia i£ nHdiagf 3K (s) G, (s)f (s}
Figure 4

Consequently the bounds on the fi can be translated into bounds

on changes in sensor or controllg?ipgr stability in the original ;




Remark 1. Note that the diagonal elements of the closed-loop

Nyquist array (without Gershgorin circles) give exact

information about system stability under changes in a single

sensor assuming all other sensors remain unaltered. To see this,

-
.

suppose that we are interested in varying the jth sensor gain,

and let fi=0 for all i except i=j. Then we see from figure 3 ‘

that we have a single-input single-output problem described by

the j,jth element of R(s). Stability with respect to fj can

% therefore be determined exactly using the Nyquist diagram of

the j,jth element of R{s) which is the j,jth element of the closed-
loop Nyquist array.

Remark 2. Note that the Gershgorin c¢ ircles define bands within

which the characteristic gain loci of R(s) must lie.

2.3 Stability under changes in actuator or plant gains

For the closed-loop system shown in figure 1 consider

a new input and output between the actuators and plant as shown

below in figure 5.

+ {
fn(s) Gp(s Gs(s —>{K (s) Ga(sj—> 9n(S) ‘
_ 1

Figure 5 . I

The closed-loop transfer function relating fn(s) and Qn(s) is

given by

Ry (s)=[I + G_(s)K(s)Gy ()G, (s)] TG, (5)K ()G (5) G (s)

and following exactly the same procedure with Rn(s), as with

L R(s) in the previous section, bounds can be obtained on changes




in actuator or controller gains for stability. These bounds will

in general be more conservative than those obtained for sensor

variations since there is no explicit objective in the design

procedure which aims to make Rn(s) diagonally dominant.

.7
2.4 Example —— PW F100 Jet Engine

-+

Figure 6

K(s) — controller obtained via characteristic locus design methd

G(s) — aetuator, plant and sensor dynamics combined

The characteristic gain loci and step responses are
shown in figures 7-11, and the open-loop Nyquist array is shown
in figure 12 from which it can be seen that the open loop system
is not diagonally dominant. The closed-loop Nygquist array is
shown in figure 13. If the three sensors have their gains
multiplied by ?1, kz, and k3 respectively then the Gershgorin

bands indicate that the closed-loop system will be stable if

kl < =-0.48 ' or 0 < kl ’

k2 < =-0.43 or 0 < k2 ’

and ©0.33 < ky < 11,

If k, < -1.2 then instability will definitely occur.

3
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The closed-loop Nyquist array for actuator variations

is shown in figure 14. Because the actuator dynamics is included
in G(s) the closed-loop transfer function 15-53:; an input and
output between actuator and controller and not between plant
and actuator as described in the theory. An extra scaling
pre-compensator (1,0.001,0.01) and an extra scding post-
compensator (1,1000,100) have been added because of the different
orders of magnitude of input signals. Fhis does not affect the
stability since in.the closed loop these operations effectively
cancel each other out.

If the three actuators have their gains multiplied

simultaneously by kal' ka2' and ka3 respectively then the

Gershgorin circles indicate that stability is mintained if

2 > kal > 0.04 ’
ka2 < =-1.7 or 0.12 < ka2 ,
and ka3 < =0.24 0.02 < ka3 .

If -0.24 < ka3 < =0.07 then instability will definitely occur.
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3. Stability with nonlinear perturbations

The results in this section are based on work by
Mees and Rapp4 which in turn is founded on the small-gain
theorem and related resultsa. In simple terms & small-gain
theorem says that if the open-loop'gain' is less than unity
then the closed-loop system will be stable. No attempt to be
rigorous is made in the following.

Consider the closed-loop configuration of figure 1
and let us assume that associated with the sensors there are

some nonlinear perturbations as illustrated in figure 15 below.

+ T

K(s) Ga(s) ist(s) . Gs(s)

v

N(.) Figure 15

Assume also that the nonlinear perturbation is diagonal
i.e. N(.)=diag(ni(.)), and further that the slope of ni(xi)
is bounded below by -4 and above by €4+ as illustrated below.

ni(xi) lope €y

N Xy Figure 16

slope -ey

It is also required that N(0)=0,

Figure 15 can be redrawn to give the figure below

K(s) -"’Ica(s) Gp ()TN ) [~

H(s)
VH“____I:_T:TI | Figure 17




and applying the small-gain theorem to this we have that

for stability ﬁ(s) must be stable,which it is by design,

and the gain round the loop must be less than unity. To

check this we must first give suitable definitions for the gains
of the linear and nonlinear operators.

The gain of the linear part H(s) can be defined as

sup | H(jw) ||
w>0

1-

where || A|| = /(max. eigenvalue of A'A)

and so is the maximum principal gainsof H(s).

The gain of the nonlinear part will be taken as

max {e,}
i i

Consequently the inverse of the maximum principalgain of H(s)
gives an upper bound to the slopes of the nonlinear
perturbations for stability to be maintained.

By taking a slightly different definition for the
gain of the linear operator H(s) a graphical test, analagous
to the multivariahle circle criteria , can be obtained. The
resulting bound on the €4 however is more conservative; this
is now explained.

At a particular value of s

1

H = RAR™ R—miatrix of eigenvectors

A—diagonal matrix of
eigenvalues

therefore -1
hH) = IRARTH

<Rl Iaf 0 =Yy

= Yo
where y= | R|| || R7Y|| is the quaso—rees—ef—the ratioc of the
largest to the smallest principal gain of R, and p is the largest

eigenvalue of H. Since yp is an upver bound onllnl + thegain of

e e




H(s) can be taken as

sup v (jw) p (jw)

w20
Therefore if the eigenvalue-loci of H(jw) multiplied by ¥y (jw)
all lie within a circle centre the origin radius e;;x then

the system remains stable. The radius of the circle which just

touches these loci is therefore a maximum bound on the nonlinear

perturbations.

3.1 Example —— PW F100 Enﬁine7

which is equivalent to

Note
H(s)=[I+c(s)K(s] ta(s)k(s) (b)

Figure 18
The principal gains of H(s) are shown in figure 19. The

maximum principal gain is 1.22 which gives an upper bound on

the magnitude of the €y of 0.82.

The eigen~loci of H(jw) modified by y{(jw) are shown in figure
20, and yY(jw) is shown scparately on figure 21. From figure

20 we see that the loci are completely enclosed by a circle

ww..muwrh ..



PRNC!

Figure 19




e A 53 o e A o) o ey S e oy A sy Y 9T S SRR L e s

Emn mﬂw-lou q’g Hnw)

amn WD WER ey :
- - . ‘\. ) ]

_5\ moduue«w! 'zu u(.ea)

AT S e i

. / ’ Figure- 20




|
|
|
éj

1.0 '. b o

s

et For : /

Gkl
L Qa3

| it paded
Ju . tilisatien

L I: 25:;‘.5.7‘ ibutinsy

|

| Am0ilshility Codes
‘ [dvailatd/for
.Dist. | special

ale °
se |
4 2.0
» . 18
. éiguré, 21 _
-




of radius 8 which gives an upper bound of 0.125 on the

magnitude of the €y-

4. Stability under plant parameter uncertainty

See enclosed paper entitled "A note on parametric stability”.
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